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Abstract—The effect of buoyancy forces on laminar
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forced convective heat transfer in the thermal

entrance region of horizontal rectangular channels with uniform wall temperature is studied by a
numerical method for the case of large Prandti number fluids. The numerical results are presented
for the aspect ratios (width/height) 0-5, 1, 2 and Rayleigh numbers 0 ~ 5 x 10°, The correlation equations

for the prediction on the onset of significant free ¢

onvection effect are developed. The asymptotic

behavior of local Nusselt number is compared against the known asymptote for the uniform wall
temperature boundary condition. The entrance region where the free convection effect is significant is
clearly established and the classical Graetz problem is shown to be a limiting case and is applicable

only when R

NOMENCLATURE

A, cross-sectional area of a rectangular
channel;

a,b, width and height of a channel, respectively;

C, a constant, (DZ/uW;)0P,/0Z;

D,, equivalent hydraulic diameter, 44/S;

Gr, Grashof number, gf0.D3/v?;

g, gravitational acceleration;

h, average heat-transfer coefficient;

k, thermal conductivity;

M, N, number of divisions in X and Y directions,
respectively;

Nu, local Nusselt number, AD,/k;

n, dimensionless outward normal distance to
the wall based on D, ;

Pr, Prandt! number, v/k;

Ra, Rayleigh number, PrGr;

Re, Reynolds number, W; D, /v;

S, circumference of cross-section;

T, liquid temperature;

To, T.,, uniform entrance temperature and constant
wall temperature, respectively;

U, V, W, velocity components in X, Y, Z, directions
due to buoyancy effect;

u,v,w, dimensionless quantities for U, V and W;

Wy, fully developed axial velocity before thermal
entrance;

wy, dimensionless quantity for W;;

X,Y,Z, rectangular co-ordinates;

x,y,z, dimensionless rectangular co-ordinates.
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a< 103

Greek letters

B, coefficient of thermal expansion;
A aspect ratio of a rectangular channel, a/b;
0,0.,  dimensionless temperature difference,
(T—T,)/0. and characteristic temperature
difference, (7o — T,,), respectively;
K, thermal diffusivity;
U, viscosity;
v, kinematic viscosity;
& vorticity, V3y;
2, density;
v, dimensionless stream function.
Subscripts
b, bulk temperature;
w, value at wall.
Superscript

3

average value.

1. INTRODUCTION

THE EXISTING theoretical methods of analysis for lami-
nar convective heat transfer in the thermal entrance
region of rectangular channels usually neglect the free
convection effects [ 1-3]. However, recently it has been
shown that the free convection effects can be quite
significant in the thermal entrance region and as a
matter of fact the classical Graetz problem represents
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only a limiting case [4]. A survey of the literature
reveals that a theoretical analysis on thermal entrance
region problem (Graetz problem) in horizontal ducts
taking free convection effects into consideration is non-
existent for the case of uniform wall temperature
condition. For heating of fluids flowing in horizontal
ducts, the buoyant forces cause a circulation upward
at the sides and downward at the center of the duct.
The combined effects of secondary flow and the forced
main flow then set up the forward moving spirals. The
consequent mixing due to secondary flow is known to
increase the heat-transfer coefficient.

In contrast to the case of uniform wall heat flux
boundary condition, the free convection effect is ex-
pected to be insignificant for the case of uniform wall
temperature condition as the thermally fully developed
region is approached. Experimental investigations on
heat transfer due to combined free and forced convec-
tion in the thermal entrance region of horizontal tubes
with isothermal wall have been reported and the
empirical correlation equations have been proposed by
several investigators [5-7]. However, the empirical
correlation equations for heat transfer are extremely
difficult to develop because of the rather large scatter
of the experimental data and the lack of basic under-
standing on heat-transfer mechanism involving second-
ary flow in the thermal entrance. Furthermore, in the
case of rectangular channels the empirical correlation
is expected to be complicated by the multiplicity of
parameters involved.

The difficulty of obtaining theoretical solution for
thermal entrance region problem with buoyancy effects
was pointed out in [4]. However, for large Prandtl
number fluids the problem can be approached by
noting that the inertia terms in the axial momentum
and vorticity transport equations can be neglected. As
a result the primary flow becomes independent of the
secondary flow but the convection terms due to second-
ary flow in the energy equation must be retained.

The purpose of this paper is to study the buoyancy
effects on thermal entrance region heat transfer in
horizontal rectangular channels having aspect ratios
(horizontal width/vertical height) 0-5, 1 and 2 with
uniform wall temperature for large Prandtl number
fluids. The study was made in an attempt to clarify the
local Nusselt number behavior in the thermal entrance
region in general and the onset of significant free con-
vection effects and the subsequent asymptotic behavior
in particular. The numerical results obtained may also
provide some guide in future experimental inves-
tigations.

2. GOVERNING EQUATIONS

Consider a steady fully-developed laminar flow of a
viscous fluid in a horizontal rectangular channel where

Y
N+
T N
! N-1
1
J
!
b - - A~_~_4J_.
v ow
%‘:U
J
P
]
3
1 ] X
123 I.M-IM M+
a N

Fi1G. 1. Coordinate systemand numerical grid
for a horizontal rectangular channel.

a step change in wall temperature is imposed at the
entrance Z = 0 (see Fig. 1). The problem is to find the
temperature development and the related heat-transfer
coefficient along the heated or cooled section of the
channel. The formulation of the problem considering
the free convection effects based on Boussinesq ap-
proximation and neglecting the axial conduction effect
is presented in [4]. The governing equations valid for
large Prandt] number fluids are then reduced from the
general formulation [4]. Referring to the co-ordinate
system shown in Fig. 1 and introducing the following
dimensionless variables and parameters,

X =[D.}x, Y=[D.Jy. Z=[D.PrRelz,
U={[x/D]Ju, V=[x/D]Jo, W;=[W]wy,
P, =[P]P;, T-T,=[0]0, Gr=gBo.DI/V*,
Pr=v/k, Ra= PrGr, Re= WD,/v
where D, =44/S and 0.= To—T,, the following

governing equations for the large Prandtl number case
can be obtained [4].

Axial momentum equation

Viw, = C. (1)
Vorticity transport equation
V¥ = Ra ﬁ (2)
ox
Stream function equation
Vi =< 3

Energy equation
o0

0z

é ¢
V30 = e (u0)y+ ﬁ‘y(v()) +w, 4
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where
V2= 3% + 8%/8y?, C = (D3 uW;)oP;/0Z = constant
w=aY/0y and v= —3fix.

noted that the inertia terms in the axial momentum

mUG that themertia terms in the axial momentum

and vorticity transport equations have been neglected
because of large Prandt! number assumption [4]. The
equations {1)-(3) are of elliptic type and the energy
equation {4) which is in a conservation form [8] is of
parabolic type. The equations (2)~(4) are coupled but
the free-convective effect is seen to be linearly super-
imposed upon the forced convection. The boundary

Ttis
tis

annditinang aras
CORGIUUNS aly,

In addition, £ = ¢ = 0 along the vertical center line
from the assumption of symmetry depending upon the
stability of the flow and the boundary vorticity for
equation (2} is unknown. The present formulation is
based on cooling of the fluid (T; > T..). However, the
results are applicable also to the heating case (T, > 7).
This is evident when one considers the basic equations
for the case (15, > To).

In the present formulation valid for large Prandtl
number the forced flow (on its own} is always con-
sidered to be, hydrodynamically fully developed
Poiseuille type flow. Furthermore, the order of magni-
tude analysis [4] reveals that the buoyant-flow develop-
ment is significant and must be taken into account.
The forced flow development was not considered in the
analysis because of mathematical difficulty. It should
be emphasized that, the present formulation is based
upon a linearization of the equations of motion.

The analytical solution of the problem is apparently

not nractical and a

1820

numerical anpfnarh will be used.

pratiia: aiild a numerngal 10803 Wikt O¢ UBL

After obtaining the developing temperature field, the
computation of the local Nusselt number is of practical
interest. The Nusselt number Nu = hD,/k may be
obtained by considering the temperature gradient at
the wall or the overall energy balance for the axial
length dZ as,

Nuy = — (w;00782)/40,
Nuy = —(36/2n)/0,

QD=J‘ WdeA/J\ WfdA‘
A A

3. FINITE-DIFFERENCE SOLUTION

Tha Adataile reosrding the Anita.difforanss anvnntiang
2 08 GQOaLs regarding ol nit-Gandrencd qualons

are omitted here. The exact analytical solution of the
Poisson’s equation (1) is available and the accurate

,-\
——

where
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axial velocity field can be computed by using the first
ten terms of the series solution [3,9]. Briefly, the
known campatatiﬁnax procedure for the simultaneous
solution of the remaining equations (2)~{4) consists of
the following main steps for 2 given value of Rayleigh

number:

1. The numerical solution starts with equation {4
using the alternating direction implicit (ADI) method
[10].

2. Equation (2) is then solved by using the line
iterative method [10] where the boundary vorticity of
the previous section is used fo compute the current
interior vorticity.

3. The stream function ¥ is obtained by solving
equation (3) using line iterative method [10]. The
boundary vorticity is obtained by first reducing equa-
tion (3) at boundary and then approximating the

derivatives bv second order correct finite-difference

derivatives by second order correct finite-difference
equation [8].

4. The secondary velocity components u, v are com-
puted from the known stream function.

5. The axial step is advanced by one and steps 1 to 4
are repeated.

Usually at each axial step, the iterations of equations
{2} and (3) are carried out until the vorticity and the
stream function satisfy the preassigned convergence
criterion. However, numerical stability for the para-
holic equation (4) particularly near the thermal en-
trance leads to a restriction on the axial step size and
the iteration procedure is found to be impractical for
the present entrance region problem. After considerable
numerical experiment the axial step sizes Az varying
from 1077 near the entrance to 5x 10™* near the
fully developed region are found to be satisfactory.
This results in approximately 1515 axial steps. For

and 1 two calenlations are nerfarmed: the
|G 5, WO LARUER0as are penoines, il

first one starts at the bottom line j = 1 (see Fig. 1} and
ends at the top line j = N+ 1 with the second one in
the opposite direction.

The cross-sectional mesh size at each axial section
18 determined by studying the convergence of the
limiting case Ra =0 particularly near the entrance
2=0. The discussion on the convergence of the

1 el o maad avt an. Ty
numerical results will be made in next section. Accurate

steng 2
SIEPE 2

numerical solution is required near the entrance since
at higher values of Rayleigh number the onset of
significant secondary flow effect appears early. The
mesh sizes (M x N) of 16 x 32, 12 x 48 and 24 x 24
are finally used for the aspect ratios y =1, (+5 and 2
respectively. The required computing time for each
axial stepis approximately 0-8 s on IBM 360/67. Noting

thaot Ba o« Prlir the nrecant fryrmulation ig anen o ha
LRACLE AU =™ 2 T AT, il FIVODLLL AJAIILLIQLIVLE 1D DUALEL W UL

valid for any large Ra. However, the numerical difficulty
arises when Ra > 5 x 10%,
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4. HEAT-TRANSFER RESULTS

The temperature profile development is of interest in
understanding the local Nusselt number behavior in
the thermal entrance region and the example cases of
Ra=10%y=1and Ra=2 x 10°, y = 2 are shown in
Figs. 2 and 3, respectively. It is seen that for square
channel y = | the normal temperature gradients at the
upper wall are greater than those at the lower wall and
the maximum value for @ is located near the upper
wall. The axial bulk temperature distributions 6, for
the aspect ratios y = 1, 2 and 0-5 are shown in Figs.
4-6, respectively, for several values of Rayleigh number.
The local Nusselt number variations with Rayleigh
number as parameter are shown in Figs. 7-9 for the
aspect ratios y = 1, 2 and 0-5, respectively.

The local Nusselt number variations shown in Fig. 7
for horizontal square channel y = 1 reveal that the
onset of secondary flow effect due to buoyancy forces
occurs at a certain entrance distance depending on the
value of Rayleigh number. Up to the onset point, the
Graetz theory applies. In this respect, the onset of
secondary flow effect is of practical interest in design
and the correlation equations for the prediction of
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F1G. 2. Developing temperature profiles along horizontal
and vertical center lines for y = 1 and Ra = 10°.
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F1G. 3. Developing temperature profiles along horizontal
and vertical center lines for 7 = 2 and Ra = 2 x 10°.

the onset point based on 2 per cent deviation of local
Nusselt number from that of the Graetz theory (Ra = 0)
are developed for the aspect ratios y =1, 2 and 05
and the results together with the data points are shown
in Fig. 10. As shown in Fig. 7 for Ra = 10® the free
convection effect is practically insignificant and the
maximum deviation of the Nusselt number from Graetz
theory (Ra = 0)is found to be only 0-8 per cent. This fact
clearly demonstrates that the Graetz theory is a limiting
case and applicable only when Ra < 10°. Some insight
regarding the local Nusselt number behavior may be
gained by contrasting the temperature profile develop-
ments, for example, for 0 and 0, shown in Figs. 2 and 4.
respectively, with Nusselt number variation shown in
Fig. 7 for 7 = 1 and Ra = 10°. The decrease of Nusselt
number in thermal entrance region for Graetz problem
(Ra = 0)is known to be the entrance effect due to axial
convective term only and the deviation from Graetz
theory represents the increase of Nusselt number over
Graetz theory due to free convection effect. It is clear
that the entrance and free convection effects will
eventually balance out and the local minimum Nusselt
number appears at some downstream location depend-
ing on the value of Rayleigh number. Subsequently. the
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free convection effect dominates over the entrance
effect and the Nusselt number increases until the local
maximum value for Nu is reached. For the preseni
uniform wall temperature condition the temperature
difference AT = T,— T,, giving rise to free convection
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proached from above. The physical mechanism for
heat transfer is now clear. One may further note that
the developing temperature profiles 2 and 4 shown in
Fig. 2 correspond to the local minimum and maximum

Nusselt number points, respectively, for Ra = 10°
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F1G. 5. Axial bulk temperature distribution for y = 2 with Raas parameter.

effect gradually decreases as the asymptotic condition
is approached (6, —>0). It is then clear that after

raarhinga tha lnral mavimnm valus for A ths Innal
réacoing nf 0Ca: maximum va:ue Ior N, 1ng 10Ca:

Nusselt number decreases again due to entrance effect
until the theoretical Graetz curve (Ra=0) is ap-

shown in Fig. 7. At the location with minimum Nusselt
number, the central core with uniform entrance tem-

naratnre T, diconnaare comnlataly
PAIaiuiC 4o GISapplals Compitildy.

The Nusselt number behavior for the other aspect
ratios y = 2 and 05 is qualitatively similar to that of
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y =1. However, at Ra=5x10°for y=1 and Ra =
2 x 10° for y = 2 the increase of the Nusselt number
after reaching the local minimum Nusselt number point
and the decrease of the Nusselt number subsequent to
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FiG. 7. Local Nusselt number variation for y = 1 with Ra
as parameter.
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attaining the local maximum value are both seen to
be rather rapid. An examination of the secondary flow
patterns reveals that within the range z = 8 x 1073 ~
7x1072fory=1,Ra=5x10°andz=10"%~ 107!
for y =2, Ra=2x 10%, four vortices for secondary
flow appear. Similar situation also occurs for the range
z=16x10"2~6x 1072 with Ra=2x10% y=1
andz =16 x 1072 ~ 2:6 x 1072 with Ra = 10°,y = 2,
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F1G. 8. Local Nusselt number variation for y = 2 with Ra
as parameter.



Natural convection effects on Graetz problem

10 L S B 3 ﬁll‘llll] —T
9k 2410° \\/Vu,f!/ZZ .
I \\ T
10°
s 1
Nu
5x10°
6 1
5 \ W
y=05 10* \\
4 4
F Ra=0
3 ot aaanl Lot \ Lo
0% 2 4 6 102 2 4 6 10 2 4

FiG. 9. Local Nusselt number variation for y = 0-5 with
Ra as parameter.

The typical secondary flow field illustrating the direc-
tion of the secondary velocity vector only is shown
inFig. 11fory=2and Ra=2x 10%atz =21 x 1072
For the case of heating at the wall, the secondary flow
pattern becomes the mirror image of that shown in
Fig. 11. The fluid moves upward near the side wall and
toward the vertical center line along the upper wall
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F16. 10. Correlation equation for the onset of free convec-
tion effect based on 2 per cent deviation of local Nusselt
number from that of classical Graetz theory (Ra = 0).
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with the corresponding shift for the centers of vortex
rolls. When four vortex rolls appear, the values of the
boundary vorticities are found to change the sign. As
a result, the developing temperature profile is also
varied and the typical profiles are shown as curves 5
in Fig. 3 for y = 2 and Ra = 2 x 10°. The particular
temperature profiles can be understood readily when
one notes the secondary flow pattern shown in Fig. 11.
It is to be noted that for the aspect ratio y = 0-5 where
the vertical height of the channel is twice the horizontal
width, the above mentioned secondary flow pattern is
not observed evenat Ra = 2 x 10°. The present numeri-
cal solution shows that four vortex rolls may appear
at higher Rayleigh numbers for horizontally wide
rectangular channels with y > 1.
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F1G. 11. Secondary flow pattern showing the direction of
secondary velocity vectors for y =2 and Ra =2 x 10° at
z=21x10"2%

For Graetz problem in circular tubes with uniform
wall temperature, the asymptote for the Nusselt number
based on the arithmetic mean temperature difference
(To — T.,)/2 representing the condition that the outflow-
ing liquid has reached the tube wall temperature 7,
is reported by McAdams [11] and can be readily
applied to the present rectangular channel problem as
Nu, = h,D,/k = 1/2z. For the present thermal entrance
region problem in horizontal rectangular channels with
uniform wall temperature the asymptote Nu, is of
special interest and is shown in Figs. 7-9 for reference.
Although the asymptote Nu, is based on the average
heat-transfer coefficient h, over the entrance length and
arithmetic mean temperature difference [11],itis never-
theless instructive in understanding the asymptotic
behavior of the local Nusselt number for the present
study.
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At this point, it is appropriate to discuss the accuracy
and convergence of the numerical results. For the range
of entrance region where the free convection effect is
significant, the convergence criterion [4],

= LIRSV =PRI < 4% 1073,
L LJ

is generally satisfied for W, ¢ and 6 except at higher
values of Rayleigh number. For Ra=5x10°, y=1
and Ra = 2 x 10°, y = 2, the error ¢ as defined above
reaches as high as 18 x 1072 at several downstream
sections near the peak of the local Nusselt number. As
noted in Section 2, the local Nusselt number can be
computed in two ways. The numerical results for Nu,
based on average normal temperature gradient at wall
are expected to have relatively higher error since the
temperature gradient is greater near the wall and a
smaller mesh size is required to evaluate the wall tem-
perature gradient accurately. With sufficiently small
axial steps such as those finally used in the present
study, it is then clear that the Nusselt number Nu,
based on overall energy balance gives more accurate
results. It is found that the two Nusselt numbers, Nu,
and Nu, generally agree well for the region between
the onset of secondary flow effect and fully developed
condition. For example, for Ra < 5 x 10* with y =1
and 05 and Ra < 10° with v =2, the deviation of
Nu, from Nuy is less than 1 per cent. At higher values
of Rayleigh number, the maximum deviation of ap-
proximately 4 per cent occurs at z = 10~* but the
deviation elsewhere is still generally less than 1 per
cent. The maximum deviation is believed to be caused
by inaccurate evaluation of local wall temperature
gradient ¢6/Cn. The numerical results presented for
Nu are based on Nu; and are believed to be accurate
within 1 per cent. The asymptotic Nusselt numbers of
2988 for y = 1 and 3-3946 for y = 2, obtained in this
study agree excellently with the known results [12].

5. CONCLUDING REMARKS

1. For the range of Rayleigh numbers 0 ~ 5 x 10°
and aspect ratios y = 05, 1, 2 investigated, the free
convection effect on laminar heat transfer in the thermal
entrance region of horizontal rectangular channels with
uniform wall temperature is found to be significant
only in some entrance region depending on aspect
ratio (see Figs. 7-9). It is worth noting that the free
convection effect is negligible near the thermal entrance
and in the thermally fully> developed region. Also the
free convection effect is practically negligible only
when Ra < 103,

2. The two limiting (asymptotic) cases for the present
analysis are of interest. When Ra/Re — 0, one obtains
the classical Graetz problem. When Ra/Re —» « or
W — 0, the problem reduces to natural convection in

a rectangular cavity. In this connection the references
[13,14] should be mentioned.

3. In view of the considerable difficulty in obtaining
theoretical solution without large Prandtl number
assumption, the practical question arises as to whether
or not the present results can be applied to Prandtl
number, say, 10. In the absence of theoretical analysis
valid for any Prandtl number, the question can be
answered only by comparison with experimental re-
sults. In this connection, some experimental resuits
which appear to indicate the free convection effect are
shown in Fig. 6 of [3] but apparently the experiment
was not designed to study the effect. In the absence
of further detailed information, a comparison with the
present result is not made here.

4. The present numerical results clearly suggest the
difficulty in obtaining an empirical correlation equation
for heat transfer valid for a range of Prandtl numbers
using the experimental data [5-7].

S. The circumstances under which the four vortices
may appear need further investigation. When the
vertical height of the horizontal rectangular channel is
greater than the horizontal width, b > a, the appear-
ance of the four vortices is probably not likely because
of side wall effect. On the other hand, when b < a the
four vortices may appear at higher Rayleigh number.
From the viewpoint of thermal instability, the vertical
center line temperature profiles shown in Fig. 3 for
v = 2 reveal that only the upper half of the channel
cross-section is unstable for the cooling case under
consideration and this observation seems to be con-
firmed by the secondary flow pattern shown in Fig. 11.

6. The asymptotic behavior of local Nusselt number
for the present problem is of special interest. For the
aspect ratios and Rayleigh numbers under considera-
tion, the free convection effect can be neglected practi-
cally at approximately z = 5 x 107 1.
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EFFET DE LA CONVECTION NATURELLE DANS LE PROBLEME DE GRAETZ
POUR DES CANAUX RECTANGULAIRES HORIZONTAUX AVEC TEMPERATURE
PARIETALE UNIFORME ET POUR DES GRANDS Pr

Résumé--On étudie par une méthode numérique Veffet d’Archiméde sur la convection thermique
laminaire et forcée dans la région d'entrée de canaux rectangulaires horizontaux avec une température
pari¢tale uniforme, dans le cas des nombres de Prandtl élevés. On présente les résultats numériques
pour des rapports largeur/hauteur égaux & 0,5-1-2 et des nombres de Rayleigh compris entre zéro et
5 x 10% On établit les équations de corrélation pour le début de Veffet sensible de la convection
naturelle. Le comportement asymptotique du nombre de Nusselt local est comparé avec I'asymptote
connue pour la condition de température pariétale uniforme. On délimite clairement les conditions oo
Peffet de la convection naturelle est significatif, et le probléme classique de Graetz est un cas limite
applicable seulement quand Ra < 107,

EINFLUSS DER FREIEN KONVEKTION BEIM GRATZ-PROBLEM IN
HORIZONTALEN RECHTWINKLIGEN KANALEN MIT EINHEITLICHER
WANDTEMPERATUR BEI GROSSEN PRANDTL-ZAHLEN

Zusammenfassung— Beim Wirmeiibergang bei erzwungener Konvektion mit laminarer Stromung in der
thermischen Anlaufstrecke von horizontalen rechtwinkligen Kanilen mit gleichférmiger Wandtemperatur
wird fiir den Fall von Fluiden mit groBer Prandtl-Zahl mittels einer numerischen Methode der FinfluB
der Auftriebskriifte untersucht.

Die numerischen Losungen werden fiir das Seitenverhilinis (Breite/Hohe) 0.5, 1, 2 und Rayleigh-Zahlen
von 0-5.10° dargestellt. Die Korrelationsgleichungen zur Bestimmung des Beginns des Einflusses der
freien Konvektion werden entwickelt. Das asymptotische Verhalten der Nusselt-Zahl wird verglichen
mit der bekannten Asymptote fir die Randbedingung der gleichférmigen Wandtemperatur. Die
Einlaufstrecke, in der der Einflufl der freien Konvektion von Bedeutung ist, wird klar nachgewiesen,
und es wird gezeigt, daB das klassische Griitz-Problem ein Grenzfall ist und nur anwendbar fiir Ra < 10°.

BJIMAHWE ECTECTBEHHOM KOHBEKLIMM B 3AJAME [P3TUA 1S TOPU3OH-
TAJIBHBIX KAHAJIOB [TPAMOYTOJILHOI'O CEYEHUSA C NOCTOAHHON TEMIIEPA-
TYPOM CTEHKH MNPH BOJILIINX YUCIAX MMPAHATAA

Annoramus — IlpopeneHo uHCneHHOE HCCIIGROBAHME BIMAHMSA BLITANKHBAIOWIAX CHII HA TeILiO-
ofMEH B TaMHHAPHOM TEYCHHH NPH BAIHYXKOCHHOH KOHBEKUHH Ha TEIUIOBOM BXOIHOM YHACTKE B
TOPM3OHTAJILHBIX K4HAaX ¢ MOCTOSHHOH TeMIepaTypod CTEHKH TNpPSAMOYFOJBHOIO CEYEHMS MNJif
xupkocted ¢ 6onsunm aucnom Tpanaarns. TIpMBOAATCA YHCIEHHBIE PE3YNbTATHI, IONYYEHHBIE TIPH
OTHOLICHUAX CTOPOH (WHPHHbI K BhicoTe) 0,5; 1; 2 1 uncnax Penes 0 ~ 5 X 10°. Tlocrpoenst koppens-
UMOHHBIC YDABHCHUS /i ONPEACICHHSA BO3SHHKHOBEHHS 3HAMHTE/BHOTO BIHAHMA cBOGOAHON Kou-
Bekuun. IIpoBeneHO cpaBHeHME aCHMITOTHYECKOTO MOBEHEHHS JokansHOro umcna Hyccembra ¢
H3BECTHBIM 3HAYEHMEM IJI8 KaHAJOB C TOCTOSHHON TeMmeparypod credkd. To4HO ompenenes
BXOIHOM Y4aCTOK, rie BIHMAHHE CBOOONHON KOHBEKLUHMH BEChMA CYIIECTBEHHO, M TOKA3aHO, 4TO
Knaccudeckas 3anaya I'p3Tua ABIsETCS MpeesbHBIM Clly4aeM H ClipaBeaMBa TONLKO pH Ra << 10°.



