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Abstract-The effect of buoyancy forces on laminar forced convective heat transfer in the thermal 
entrance region of horizontal rectangular channels with uniform wall temperature is studied by a 
numerical method for the case of large Prandtl number fluids. The numerical results are presented 
for the aspect ratios (width/height) 0.5, I,2 and Rayleigh numbers 0 - 5 x 10’. The correlation equations 
for the prediction on the onset of significant free convection effect are developed. The asymptotic 
behavior of local Nusselt number is compared against the known asymptote for the uniform wall 
temperature boundary condition. The entrance region where the free convection effect is significant is 
clearly established and the classical Graetz problem is shown to be a limiting case and is applicable 

only when Ra Q 103. 
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NOMENCLATURE 

cross-sectional area of a rectangular 
channel; 

width and height of a channel, respectively; 

a constant, (OS/p W,)f?P,/aZ; 

equivalent hydraulic diameter, 4A/S; 
Grashof number, gj?0,D~/v2; 

gravitational acceleration; 
average heat-transfer coefficient; 
thermal conductivity; 

number of divisions in X and Y directions, 
respectively; 
local Nusselt number, hD,/k; 

dimensionless outward normal distance to 
the wall based on D,; 

Prandtl number, V/K; 
Rayleigh number, PrGr; 

Reynolds number, mfD, Jv; 

circumference of cross-section; 
liquid temperature; 
uniform entrance temperature and constant 

wall temperature, respectively; 
CJ, V, W. velocity components in X, Y, Z, directions 

u, 0, M’, 

61 

Wf, 
x, xz, 
x, Y, 2, 

due to buoyancy effect; 
dimensionless quantities for U, V and W; 

fully developed axial velocity before thermal 
entrance; 
dimensionless quantity for W,; 

rectangular co-ordinates; 
dimensionless rectangular co-ordinates. 

Greek letters 

coefficient of thermal expansion; 

aspect ratio of a rectangular channel, a/b; 

dimensionless temperature difference, 
(T - Tw)/O, and characteristic temperature 
difference, (To - T,), respectively; 
thermal diffusivity; 
viscosity; 
kinematic viscosity; 

vorticity, V’$; 
density; 

dimensionless stream function. 

Subscripts 

b, bulk temperature; 

W, value at wall. 

Superscript 

-1 average value. 

1. INTRODUCTION 

THE EXISTING theoretical methods of analysis for lami- 
nar convective heat transfer in the thermal entrance 
region of rectangular channels usually neglect the free 
convection effects [l-3]. However, recently it has been 
shown that the free convection effects can be quite 
significant in the thermal entrance region and as a 
matter of fact the classical Graetz problem represents 
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only a limiting case [4]. A survey of the literature 
reveals that a theoretical analysis on thermal entrance 

region problem (Graetz problem) in horizontal ducts 
taking free convection effects into consideration is non- 

existent for the case of uniform wall temperature 

condition. For heating of fluids flowing in horizontal 
ducts, the buoyant forces cause a circulation upward 
at the sides and downward at the center of the duct. 

The combined effects of secondary flow and the forced 
main flow then set up the forward moving spirals. The 
consequent mixing due to secondary flow is known to 

increase the heat-transfer coefficient. 

In contrast to the case of uniform wall heat flux 

boundary condition, the free convection effect is ex- 
pected to be insignificant for the case of uniform wall 

temperature condition as the thermally fully developed 
region is approached. Experimental investigations on 

heat transfer due to combined free and forced convec- 
tion in the thermal entrance region of horizontal tubes 
with isothermal wall have been reported and the 

empirical correlation equations have been proposed by 
several investigators [5- 71. However, the empirical 

correlation equations for heat transfer are extremely 
difficult to develop because of the rather large scatter 
of the experimental data and the lack of basic under- 

standing on heat-transfer mechanism involving second- 
ary flow in the thermal entrance. Furthermore, in the 
case of rectangular channels the empirical correlation 

is expected to be complicated by the multiplicity of 

parameters involved. 

/ 
-x &fMfl 

FIG. 1. Coordinate system and numerical grid 
for a horizontal rectangular channel. 

The difficulty of obtaining theoretical solution for 

thermal entrance region problem with buoyancy effects 
was pointed out in [4]. However, for large Prandtl 

number fluids the problem can be approached by 
noting that the inertia terms in the axial momentum 

and vorticity transport equations can be neglected. As 
a result the primary flow becomes independent of the 
secondary flow but the convection terms due to second- 
ary flow in the energy equation must be retained. 

a step change in wall temperature is imposed at the 
entrance Z = 0 (see Fig. 1). The problem is to find the 
temperature development and the related heat-transfer 

coefficient along the heated or cooled section of the 
channel. The formulation of the problem considering 

the free convection effects based on Boussinesq ap- 
proximation and neglecting the axial conduction effect 
is presented in [4]. The governing equations valid for 

large Prandtl number fluids are then reduced from the 
general formulation [4]. Referring to the co-ordinate 
system shown in Fig. 1 and introducing the following 

dimensionless variables and parameters, 

The purpose of this paper is to study the buoyancy 
effects on thermal entrance region heat transfer in 
horizontal rectangular channels having aspect ratios 
(horizontal width/vertical height) 0.5, 1 and 2 with 
uniform wall temperature for large Prandtl number 
fuids. The study was made in an attempt to clarify the 
local Nusselt number behavior in the thermal entrance 
region in general and the onset of significant free con- 
vection effects and the subsequent asymptotic behavior 
in particular. The numerical results obtained may also 
provide some guide in future experimental inves- 
tigations. 

X = [&]x> Y = [D,]y, 2 = [D,PrRe]z, 

U = [K/D,]u, V = [K/D~]u, W, = [Vf]wf, 

Pf = [Pc]PJ, T-T, = [O,]U, Gr = g/?O,D~/?, 

Pr = V/K, Ra = PrGr, Re = WfDJv 

where D, = 4AJS and 0, = To- T,. the following 
governing equations for the large Prandtl number case 

can be obtained [4]. 

Axial momentum equation 

V&f = c. 

Vorticity transport equation 

(1) 

2. GOVERNING EQUATIONS 

Consider a steady fully-developed laminar flow of a 

Stream function equation 

v2* = 5. 

Energy equation 

(3) 

(4) 
viscous fluid in a horizontal rectangular channel where 
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It is noted that the inertia terms in the axial mamentum 
and vorticity transport equations have been negiected 
because of large Frandt~ number assumption [4]. The 
equations (t)-(3) are of elliptic type and the energy 
equation (4) which is in a conservation form [S] is of 
parabolic type. The equations (2)-(4) are coupled but 
the free-convective effect is seen to be linearly super- 
imposed upon the forced convection. The boundary 
conditions are : 

u=u=w~=$=O=O atwall 

@ = 1 at entrance z = 0. 
(5) 

In addition, I$ = $ = 0 along the vertical center line 
from the ass~ption of symmetry depending upon the 
stability of the flow and the boundary vorticity for 
equation (2) is unknown. The present formulation is 
based on cooling of the fluid (T, > T,). However, the 
resuItsare applicable atso to the heating case (7& > To). 
This is evident when one considers the basic equations 
for the case (T, > TO). 

In the present formulation valid for large Prandtl 
number the forced flow (on its own) is always con- 
sidered to be, hydrodynamically fuliy developed 
Poiseuille type flow. Furthermore, the order of magni- 
tudeanalysis [4] reveals that the buoyant-flow develop 
ment is significant and must be taken into account. 
The forced flow development was not considered in the 
analysis because of mathemati~ difficulty. It should 
be emphasized that, the present formulation is based 
upon a linearization of the equations of motion. 

The analytical solution of the problem is apparently 
not practical and a numerical approach Nili be used. 
After obtaining the developing temperature field, the 
computation of the local Nusselt number is of practical 
interest. The Nusseit number Nu = &&/k may be 
obtained by cansidering the temperature gradient at 
the wall or the overall energy balance for the axiai 
length dZ as, 

where 

(6) 

3. Fluid-DIFFERENCE SOLUTION 

The details regarding the finite-difference equations 
are omitted here. The exact anatytical solution of the 
Poisson’s equation (1) is available and the accurate 

axial veiocity field can be computed by using the first 
ten terms of the series solution [3,9]. Briefly, the 
known computational procedure for the simultaneous 
solution of the remaining equations (2)-(4) consists of 
the foilowing main steps for a given value of Rayleigh 
number : 

1. The numerical solution starts with equation (4) 
using the alte~natjng direction implicit (ADI) method 

WI. 
2. Equation (2) is then solved by using the line 

iterative method [lo] where the boundary vorticity of 
the previous section is used to compute the current 
interior vorticity. 

3. The stream function $ is obtained by solving 
equation (3) using line iterative method [lo]. The 
boundary vorticity is obtained by first reducing equa- 
tion (3) at bounda~ and then approximating the 
derivatives by second order correct finite-di~erence 
equation [SJ. 

4. The secondary velocity components u, u are com- 
puted from the known stream function. 

5. The axial step is advanced by one and steps 1 to 4 
are repeated. 

Usually at each axial step, the iterations of equations 
(2) and (3) are carried out until the vorticity and the 
stream function satisfy the preassigned convergent 
criterion. However, numerical stability for the para- 
bolic equation (4) particularly near the thermal en- 
trance teads to a restriction on the axial step size and 
the iteration procedure is found to be impractical for 
the present entrance region problem. After considerable 
numerical experiment the axial step sizes 42 varying 
from 10e7 near the entrance to 5 x 10m4 near the 
fully developed region are found to be satisfactory. 
This results in approximately 1515 axial steps. For 
steps 2 and 3, two calcufations are performed; the 
first one starts at the bottom linej = 1 (see Fig. I) and 
ends at the top line j = N-t 1 with the second one in 
the opposite direction. 

The cross-sectional mesh size at each axiaf section 
is determined by stud~ng the convergence of the 
limiting case Ra = 0 particularly near the entrance 
z = 0. The discussion on the convergence of the 
numerical results will be made in next section, Accurate 
numerical solution is required near the entrance since 
at higher values of Rayleigh number the onset OF 
significant secondary Aow effect appears early. The 
mesh sizes (M x N) of 16 x 32, 12 x 48 and 24 x 24 
are finally used for the aspect ratios y = 1, 05 and 2 
respectively. The required computing time for each 
axial step is approximately 0.8 s on IBM 360/67. Noting 
that Ra = P&r, the present formulation is seen to be 
valid for any large Ra. However, the numerical difficulty 
arises when Ra > 5 x 10’. 
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4. HEAT-TRANSFER RESULTS 

The temperature profile development is of interest in 
understanding the local Nusselt number behavior in 
the thermal entrance region and the example cases of 
Ru = 105, 1’ = 1 and Ra = 2 x lo’, y = 2 are shown in 

Figs. 2 and 3, respectively. It is seen that for square 
channel y = 1 the normal temperature gradients at the 
upper wall are greater than those at the lower wall and 
the maximum value for 0 is located near the upper 

wall. The axial bulk temperature distributions &, for 

the aspect ratios 7 = 1, 2 and 0.5 are shown in Figs. 
4-6, respectively, for several values of Rayleigh number. 

The local Nusselt number variations with Rayleigh 
number as parameter are shown in Figs. 7-9 for the 

aspect ratios 7 = 1.2 and 0.5, respectively. 
The local Nusselt number variations shown in Fig. 7 

for horizontal square channel y = 1 reveal that the 

onset of secondary flow effect due to buoyancy forces 
occurs at a certain entrance distance depending on the 

value of Rayleigh number. Up to the onset point, the 
Graetz theory applies. In this respect, the onset of 

secondary flow effect is of practical interest in design 
and the correlation equations for the prediction of 

X 
0 

Y 

b 

FIG. 2. Developing temperature profiles along horizontal 
and vytical center lines for :’ = I and Ra = 10’. 

Y 

b 

FE. 3. Developing temperature profiles along horizontal 
and vertical center lines for >’ = 2 and Ru = 2 x IO’. 

the onset point based on 2 per cent deviation of local 
Nusselt number from that of the Graetz theory (Ra = 0) 

are developed for the aspect ratios y = 1, 2 and 0.5 
and the results together with the data points are shown 
in Fig. 10. As shown in Fig. 7 for Ru = lo3 the free 
convection effect is practically insignificant and the 
maximum deviation of the Nusselt number from Graetz 

theory (Ra = 0) is found to be only 0.X per cent. This fact 
clearly demonstrates that the Graetz theory is a limiting 
case and applicable only when Ru < 103. Some insight 
regarding the local Nusselt number behavior may be 
gained by contrasting the temperature profile develop- 
ments, for example, for 0 and Ob shown in Figs. 2 and 4. 
respectively, with Nusselt number variation shown in 
Fig. 7 for y = 1 and Ru = 105. The decrease of Nusselt 
number in thermal entrance region for Grdetz problem 
(Ra = 0) is known to be the entrance effect due to axial 
convective term only and the deviation from Graetz 
theory represents the increase of Nusselt number over 
Graetz theory due to free convection effect. It is clear 
that the entrance and free convection effects will 
eventually balance out and the local minimum Nusselt 
number appears al some downstream location depend- 
ing on the value of Rayleigh number. Subsequently. the 
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free convection effect dominates over the entrance proached from above. The physical mechanism for 

effect and the Nusselt number increases until the local heat transfer is now clear. One may further note that 

maximum value for Nu is reached. For the present the developing temperature profiles 2 and 4 shown in 

uniform wall temperature condition the temperature Fig. 2 correspond to the local minimum and maximum 
difference AT = Tb- T, giving rise to free convection Nusselt number points, respectively, for Ra = 10’ 

I.0 
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0.6 

#* 

0.4 

0.2 

0 

lo‘3 2 4 6 lo- 2 4 6 lo-' 2 3 

I 

FIG. 4. Axial bulk temperaturedistributionfor y = 1 with Ra as parameter. 
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0.8 
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8.5 
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a3 2 4 6 10-Z 2 4 6 lo-' 2 3 
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FIG. 5. Axial bulk temperaturedistribution for y = 2 with Raas parameter. 

effect gradually decreases as the asymptotic condition shown in Fig. 7. At the location with minimum Nusselt 
is approached (0, -0). It is then clear that after number, the central core with uniform entrance tem- 
reaching the local rna~rn~ value for Nu, the local perature To disappears completely. 
Nusselt number decreases again due to entrance effect The Nusselt number behavior for the other aspect 
until the theoretical Graetz curve (Ra = 0) is ap- ratios y = 2 and @5 is qualitatively similar to that of 



840 JENN-WUU Ou, K. C. CHENG and RAN-CHAU LIN 

1o-3 2 4 6 IO-’ 2 4 6 IO-’ 2 3 

I 
FIG. 6. Axial bulk temperature distribution for ;I = 0.5 with Ra as 

parameter. 

y = 1. However, at Ra = 5 x 10’ for y = 1 and Ra = 

2 x 10’ for y = 2 the increase of the Nusselt number 

after reaching the local minimum Nusselt number point 

and the decrease of the Nusselt number subsequent to 

! 

1 

3 4 6 lO-3 2 4 6 IO-' 2 4 6 IO-' 2 4 

I 

FIG. 7. Local Nusselt number variation for y = 1 with Ra 
as parameter. 

attaining the local maximum value are both seen to 

be rather rapid. An examination of the secondary how 

patterns reveals that within the range z = 8 x 10e3 - 
7 x 1O-2 for y = 1, Ra = 5 x 10’ and z = lo-’ - 10-l 

for y = 2, Ra = 2 x 105, four vortices for secondary 
flow appear. Similar situation also occurs for the range 

z = 1.6 x lo-’ -6~10~~ with Ra=2x105, y=l 
and z = 1.6 x 10m2 - 2.6 x 10m2 with Ra = 105, y = 2. 

Nu 

FIG. 8. Local Nusselt number variation for y = 2 with Ra 
as parameter. 
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FIG. 9. Local Nusselt number variation for y = 03 with 
Ra as parameter. 

The typical secondary flow field illustrating the direc- 
tion of the secondary velocity vector only is shown 
inFig.11fory=2andRa=2x105atr=2~1x10-2. 
For the case of heating at the wall, the secondary flow 
pattern becomes the mirror image of that shown in 
Fig. 11. The fluid moves upward near the side wall and 
toward the vertical center line along the upper wall 

6 

Y Cl CT 
05 65.27 I.113 
I 41.995 I.171 
2 69.02 I.133 

51: lOf3 

2x10-4 4 6 10-3 2 4 6 10-z I.5 

.? 

FIG. 10. Correlation equation for the onset of free convec- 
tion effect based on 2 per cent deviation of local Nusselt 

number from that of classical Graetz theory (Ra = 0). 

with the corresponding shift for the centers of vortex 
rolls. When four vortex rolls appear, the values of the 
boundary vorticities are found to change the sign. As 
a result, the developing temperature profile is also 
varied and the typical profiles are shown as curves 5 
in Fig. 3 for 7 = 2 and Ra = 2 x 105. The particular 
temperature profiles can be understood readily when 
one notes the secondary flow pattern shown in Fig. 11. 
It is to be noted that for the aspect ratio y = 05 where 
the vertical height of the channel is twice the horizontal 
width, the above mentioned secondary flow pattern is 
not observed even at Ra = 2 x 10’. The present numeri- 
cal solution shows that four vortex rolls may appear 
at higher Rayleigh numbers for horizontally wide 
rectangular channels with y > 1. 

FIG. 11. Secondary flow pattern showing the direction of 
secondary velocity vectors for y = 2 and Ra = 2 x lo5 at 

z = 2.1 x 1o-2. 

For Graetz problem in circular tubes with uniform 
wall temperature, the asymptote for the Nusselt number 
based on the arithmetic mean temperature difference 
(To - I&,)/2 representing the condition that the outflow- 
ing liquid has reached the tube wall temperature T, 
is reported by McAdams [ll] and can be readily 
applied to the present rectangular channel problem as 
Nu, = h.D,/k = l/22. For the present thermal entrance 
region problem in horizontal rectangular channels with 
uniform wall temperature the asymptote Nu, is of 
special interest and is shown in Figs. 7-9 for reference. 
Although the asymptote Nu, is based on the average 
heat-transfer coefficient h, over the entrance length and 
arithmetic mean temperaturedifference [ll], it is never- 
theless instructive in understanding the asymptotic 
behavior of the local Nusselt number for the present 
study. 
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At this point, it is appropriate to discuss the accuracy 
and convergence of the numerical results. For the range 

of entrance region where the free convection effect is 
significant, the convergence criterion [4], 

& = CIfi!s+*‘-fi~;‘I/CI.~!;+“~ < 4 x lo-“, 
1.i i.j 

is generally satisfied for $, 5 and 0 except at higher 
values of Rayleigh number. For Ra = 5 x 105, y = I 
and Ra = 2 x 105, y = 2, the error E as defined above 

reaches as high as 1.8 x lo-’ at several downstream 
sections near the peak of the local Nusselt number. As 
noted in Section 2, the local Nusselt number can be 
computed in two ways. The numerical results for Nuz 

based on average normal temperature gradient at wall 

are expected to have relatively higher error since the 
temperature gradient is greater near the wall and a 

smaller mesh size is required to evaluate the wall tem- 
perature gradient accurately. With sufficiently small 

axial steps such as those tinally used in the present 
study, it is then clear that the Nusselt number Nui 

based on overall energy balance gives more accurate 
results. It is found that the two Nusselt numbers, Nui 
and NuZ generally agree well for the region between 

the onset of secondary flow effect and fully developed 
condition. For example, for Ra < 5 x 10” with y = 1 
and 0.5 and Ra Q lo5 with 7 = 2, the deviation of 

Nuz from Nui is less than 1 per cent. At higher values 

of Rayleigh number, the maximum deviation of ap- 
proximately 4 per cent occurs at z x 10e3 but the 

deviation elsewhere is still generally less than 1 per 
cent. The maximum deviation is believed to be caused 
by inaccurate evaluation of local wall temperature 

gradient i0/?n. The numerical results presented for 
Nu are based on Nu, and are believed to be accurate 

within 1 per cent. The asymptotic Nusselt numbers of 
2.988 for 7 = 1 and 3.3946 for y = 2, obtained in this 
study agree excellently with the known results [12]. 

5. CONCLUDING REMARKS 

1. For the range of Rayleigh numbers 0 - 5 x lo5 
and aspect ratios y = 05, 1, 2 investigated, the free 
convection effect on laminar heat transfer in the thermal 
entrance region of horizontal rectangular channels with 
uniform wall temperature is found to be significant 
only in some entrance region depending on aspect 
ratio (see Figs. 779). It is worth noting that the free 
convection effect is negligible near the thermal entrance 
and in the thermally fully.developed region. Also the 
free convection effect is practically negligible only 
when Ra < 103. 

2. The two limiting (asymptotic) cases for the present 
analysis are of interest. When Ra/Re -+ 0, one obtains 
the classical Graetz problem. When Ra/Re 4 cx or 
IV” + 0, the problem reduces to natural convection in 

a rectangular cavity. In this connection the references 
[ 13,141 should be mentioned. 

3. In view of the considerable difficulty in obtaining 

theoretical solution without large Prandtl number 
assumption, the practical question arises as to whether 

or not the present results can be applied to Prandtl 
number, say, 10. In the absence of theoretical analysis 
valid for any Prandtl number, the question can be 
answered only by comparison with experimental re- 
sults. In this connection, some experimental results 

which appear to indicate the free convection effect are 
shown in Fig. 6 of [3] but apparently the experiment 
was not designed to study the effect. In the absence 

of further detailed information. a comparison with the 
present result is not made here. 

4. The present numerical results clearly suggest the 

difficulty in obtaining an empirical correlation equation 
for heat transfer valid for a range of Prandtl numbers 
using the experimental data [557]. 

5. The circumstances under which the four vortices 
may appear need further investigation, When the 
vertical height of the horizontal rectangular channel is 
greater than the horizontal width, b > a, the appear- 
ance of the four vortices is probably not likely because 

of side wall effect. On the other hand, when b < a the 
four vortices may appear at higher Rayleigh number. 

From the viewpoint of thermal instability, the vertical 
center line temperature profiles shown in Fig. 3 for 

7 = 2 reveal that only the upper half of the channel 
cross-section is unstable for the cooling case under 

consideration and this observation seems to be con- 
firmed by the secondary flow pattern shown in Fig. 11. 

6. The asymptotic behavior of local Nusselt number 
for the present problem is of special interest. For the 

aspect ratios and Rayleigh numbers under considera- 
tion, the free convection effect can be neglected practi- 

cally at approximately z = 5 x 10-i. 
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EFFET DE LA CONVECTION NATURELLE DANS LE PROBLEME DE GRAETZ 
POUR DES CANAUX RECTANGULAIRES HORIZONTAUX AVEC TEMPERATURE 

PARIETALE UNIFORME ET POUR DES GRANDS Pr 

RbumLOn Ctudie par une mbthode numerique I’effet d’Archimtde sur la convection thermique 
laminaire et for&e dans la region d’entrbe de canaux rectangulaires horizontaux avec une temperature 
par&ale uniforme, dans le cas des nombres de Prandtl eleves. On presente les resultats num~riques 
pour des rapports largeur/hauteur egaux a 0,5-t-2 et des nombres de Rayleigh compris entre zero et 
5 x 10’. On etablit les equations de correlation pour ie debut de I’effet sensible de la convection 
naturelle. Le comportement asymptotique du nombre de Nusselt local est compare avec l’asymptote 
connue pour la condition de temperature parietale uniforme. On dtlimite clairement les conditions oi 
l’effet de la convection naturelle est significatif, et le probltme classique de Graetz est un cas limite 

applicable seulement quand Ra < 1Oj. 

EINFLUSS DER FREIEN KONVEKTION BEIM GRATZ-PROBLEM IN 
HORIZONTALEN RECHTWINKLiGEN KANALEN MIT EINHEITLICHER 

WANDTEMPERATUR BE1 GROSSEN PRAN~TL-ZAHL~N 

Zusammenfmssung-Beim Warmetibergang bei erzwungener Konvektion mit laminarer Stromung in der 
thermischen Anlaufstrecke von horizontalen rechtwinkligen KanPlen mit gleichformiger Wandtemperatur 
wird fur den Fall von Fluiden mit groBer Prandtl-Zahl mittels einer numerischen Methode der EinfluD 
der Auft~ebskr~fte untersucht. 

Die numerischen Losungen werden fur das Seitenverh~ltnis (Breite/H~he) 05, 1,2 und Rayleigh-Zahlen 
von O-5.10’ dargestellt. Die Korrelationsgleichungen zur Bestimmung des Beginns des Einflusses der 
freien Konvektion werden entwickelt. Das asymptotische Verhalten der Nusselt-Zahl wird verglichen 
mit der bekannten Asymptote fur die Randbedingung der gleichMrmigen Wandtemperatur. Die 
Einlaufstrecke, in der der EinfluB der freien Konvektion von Bedeutung ist, wird klar nachgewiesen, 
und es wird gezeigt, da13 das klassische Grgtz-Problem ein Grenzfall ist und nur anwendbar fir Ra < 103. 

BJ’IMIIHME ECTECTBEHHOR KOHBEKHMM B 3AnAYE 1-P3THA AJIll I-OPH30H- 
TAJIbHbIX KAHAJIQB rIPRMOYTOIlbHOl-0 CEYEHMII C ROCTOIlHHOZi TEMI-IEPA- 

TYPOM CTEHKM I-iPEl ~Onb~~X =ZHCJ’IAX ~PAH~T~~ 

AFIHOIIIQISS- npOBeAeH0 YHC.JleHHOe HCCneAOSaHAe BJIWRHEiK BblTaJIKBBalOtIJHX CHn Ha Tenno- 
o6MeH B JIaMHHapHOM TeYeHWH ITpU BbIHylKAeHHOfi KOHBeKUAU Ha TelTIlOBOM BXOAHOM yYaCTKe B 
TOpU30HTanbHblX KaHanaX C IIOCTORHHOfi TeMllepaTypOk CTWiKW IlpflMOyrOJIbHOrO CeYeHUfl An$j 
XCWKOCTe2iC 60JIbmAM YUCnOM npaHATn% npllBOAXTCR YHCneHHbIe pe3yJIbTaTb1,lTonyYeHHbIe npH 
OTHOIIieHWIXCTOpOH(IIISipHHbIKBbICOT@0,~;1; 2If YHCJIaX PeneJfO * 5 X ~05.ikCTpOeHblKO~peJra- 
WOHHbIe ypa3HeHUSI Anrt O~~AeneHU~ BO3H~KHOBeHU~ 3HaY~TeAbHOrO BJIW7HHII CBO6OAHO~ KOH- 
BBKUBW. npOBt!AeHO CpaBHF2Ufe aC~M~TOT~YCCKOr0 ~OBeAeH~~ JlOKaJIbHOl-0 WiCJia HyccenbTa C 
U3BeCTHbIM 3HaYeHUeM AnR KaHaJ'IOB C nOCTORHHOii TeMIlepaTypOfi CTeHKH. TO~HO OnpeAeneH 
sXOnHOi8 yYaCTOK, rAe BnHRHW CB060AHOil KOHBeKUWB BeCbMa CyIqecTBeHHO, H noKa3ax0, YTO 
KnaccmecKaR 3aAara ~p3TuammeTc~npeAenbHbm cnyyaek4 ~cnpaae~nu~a~o~b~onp~R~<:lO~. 


